DuckDB has proven to be superior to Polars when handling large datasets, particularly 1TB of data. While DuckDB effectively manages memory and execution with a robust design, Polars struggles with large data processing, leading to out-of-memory errors.
Polars, a DataFrame library designed for performance, has introduced GPU execution capabilities that can achieve up to a 70% speed increase compared to its CPU execution. This enhancement is particularly beneficial for data processing tasks, making it a powerful tool for data engineers and analysts looking to optimize their workflows.